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ABSTRACT

Intricate relationships exist among the billions of individuals who form our soci-

ety. The interactions that occur between thousands of genes within our cells com-

prise our biology. Millions of financial institutions perform billions of transactions

daily, creating complex networks of entities. These are just a few examples of the

many complex systems surrounding us.

Network science comprehends the collection, management, analysis, interpret-

ation and presentation of complex systems that employ networks. Collections of in-

terconnected items that are usually represented by a graph showing a set of nodes

joined by edges.

Complex networks often present community structures where nodes preferen-

tially link to one another. Examples of community structures include groups of

friends in society, groups of co-functioning genes in gene networks and groups

of similar products in co-purchasing networks, among many others. Detecting the

community structure in networks offers important information about the organisa-

tion and functioning of such groups. For many phenomena represented by net-

works, communities can be overlapping, with nodes participating in multiple com-

munities. For example, a person participates in several social organisations; a gene

is related to different biological functions; a product can be sold in differentmarkets.

Revealing the community structure in complex networks is no trivial task and

can lead to a non-deterministic polynomial-time hardness (NP-hard) computational

problem. In this thesis, we approach the overlapping community detection problem

using memetic algorithms, metaheuristics that employ a population-based search

and local-search inspired byDarwinian principles of natural evolution andDawkins’s

notion of a meme defined as a unit of cultural evolution. We detail the construction

of two different memetic algorithms, present computational results, compare our

methods with other state-of-the-art metaheuristics and present applications of our

methods as case studies.
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